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Abstract
We present a novel approach for performing multi-dimensional integration
of arbitrary functions. The method starts with Smolyak-type sparse grids as
cubature formulae on the unit cube and uses a transformation of coordinates
based on the conditional distribution method to adapt those formulae to
real space. Our method is tested on integrals in one, two, three and six
dimensions. The three dimensional integration formulae are used to evaluate
atomic interaction energies via the Gordon–Kim model. The six dimensional
integration formulae are tested in conjunction with the nonlocal exchange-
correlation energy functional proposed by Lee and Parr. This methodology
is versatile and powerful; we contemplate application to frozen-density
embedding, next-generation molecular-mechanics force fields, ‘kernel-type’
exchange-correlation energy functionals and pair-density functional theory.

PACS number: 31.15.E−

1. Introduction

One of the most pervasive tasks in modern computational simulation is numerical integration.
This is especially true in many-body quantum mechanics, where the integrals that need to
be performed often have high dimensionality and where the integrands are often strongly
inhomogeneous. Consider, for example, that in order to attain so-called ‘chemical accuracy’
for a molecular system (i.e., enough accuracy in an energy calculation to predict the rate
of a chemical reaction to within an order of magnitude), one often has to integrate strongly
peaked functions very accurately, with relative errors of less than 0.001%. (For moderate-sized
molecules, the ‘chemically relevant’ portion of the electron density spans five to seven orders
of magnitude.) Such daunting integration tasks would be manifestly impossible were it not
for the ability of physicists and chemists to ‘guess’ the structure of the integrand based on
mathematical conditions and physicochemical insight. The goal of this paper is to introduce
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a general approach that leverages prior knowledge about the integrands to design an efficient
numerical integration method.

In particular, we will introduce a universally applicable method for performing d-
dimensional integrals,

∫
Rd

f (r)P (r) dr ≈
ML∑
i=1

wif (ri ), (1)

where P(r) > 0 is any non-negative integrable ‘weight function’. This form of integration
allows one to leverage most of one’s knowledge about the integrand of interest. In particular,
one can ensure that f (r) is smooth by ensuring that the analytically defined P(r) correctly
models all of the singularities and nondifferentiability of the integrand. (In molecular-
electronic structure calculations, for example, P(r) should model the electron-nuclear cusps
in the electron density/wavefunction [1–7].) Ideally, P(r) should be chosen so that f (r) is
slowly varying. To the extent that this cannot be achieved, then P(r) should be largest in
the regions where f (r) varies most strongly. In this way, knowledge of the structure of the
integrand allows us to construct more efficient quadrature methods.

But what numerical methods should we use to perform these integrals? In one dimension,
the answer is clear: Gaussian quadrature formulae with respect to the weight function, P (x),
will be the optimal integration method [8–11]. Similarly, Gaussian cubature would be optimal
in higher dimensions. However, constructing even low-order Gaussian cubature formulae is
very difficult and time consuming; such methods are clearly inappropriate given the large
number (usually hundreds, sometimes millions) of integrals required in molecular electronic
structure theory calculations, which is the application of greatest interest to us. (Hall and Rees
have done work on Gaussian cubature formulae for atoms [12] and homonuclear diatomic
molecules [13], but their approach seems daunting even for these systems, and it is not clear
whether it can be extended to large molecules. Moreover, it does not seem easy to apply their
method to arbitrary choices for P(r).)

While Gaussian cubature formulae are not known for arbitrary choices of P(r), Gaussian
cubature formulae are known for certain special integration regions and certain special weight
functions, e.g., the uniformly weighted unit cube. Even when Gaussian cubature formulae are
not known for a region, other efficient formulae are [14–16]. The approach we will take uses
one of these ‘almost as good’ cubature formulae for the unit cube, due to Smolyak [17]. After
that cubature formula has been defined on the unit cube, we will transform it to real space
using a transformation whose Jacobian determinant is P(r), thereby obtaining an efficient
cubature formula for integrals with the form of equation (1). The mathematical details of
the procedure are presented in the following section, followed by the results of our numerical
tests. We conclude with a short summary of our findings and a brief prospectus for future
work.

2. Method

2.1. One-dimensional quadrature grids on [0, 1]

It is commonly asserted that, for smooth functions in one dimension, the best numerical
integration formulae are the Gaussian quadrature formulae. There are many different ways to
explain why the Gaussian quadrature formulae are ‘best’, but one of the most useful is through
a discussion of their computational complexity. The computational complexity, C(ε), is the
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computational cost required to achieve accuracy, ε [18, 19]. The integration error when an
n-point Gaussian quadrature formula is applied to an r-times differentiable function is

ε ∼ n−r . (2)

The computational cost is proportional to the number of times the function has to be evaluated,
n. So

CGa(ε) ∼ ε−1/r . (3)

These formulae may be derived from the asymptotic decay of the coefficients of the orthogonal
polynomials that underlie the Gaussian quadrature formulae and from the defining property
of Gaussian quadrature: the n-point Gaussian quadrature formula exactly integrates all of the
associated orthogonal polynomials of degree 2n−1 or less [9, 11, 20]. It is important to note
that these results are asymptotic: they only hold in the high-accuracy (large n, small ε) limit.
When lower accuracy suffices, alternative numerical integration techniques may be preferable.

Gaussian quadrature is ‘optimal’ because the results in equations (2) and (3) are optimal.
Other common formulae are less efficient. For comparison, the computational complexity
of the Monte Carlo integration, the trapezoidal rule and Simpson’s rule are CMC(ε) ∼ ε−2,
CTr(ε) ∼ ε−1/2 and CSi(ε) ∼ ε−1/4, respectively, for sufficiently smooth integrands. There are
other one-dimensional quadrature formulae that approach the utility of the Gauss formulae;
the Clenshaw–Curtis formula is competitive with Gaussian quadrature [21, 22]. For periodic
integrands, the trapezoidal rule is a ‘trigonometric’ Gaussian quadrature formula; in that
context the trapezoidal rule is usually referred to as the rectangle rule. In the quantum
chemistry community, the rectangle rule is usually referred to as the Euler–MacLaurin formula
[23]. Both the rectangle rule and the Clenshaw–Curtis rule are nested quadratures: points
from the lower order quadratures are reused in higher order formulae. Because nested grids
are numerically advantageous for our application and the rectangle and Clenshaw–Curtis rules
have ‘near-Gaussian’ quality, we will consider only these rules in this paper. Moreover, we
are primarily interested in quadrature formulae on the unit interval,∫ 1

0
f (x) dx ≈ Ql[f ] ≡

ml∑
i=1

wif (xi). (4)

Here, l denotes the order of the quadrature formula, ml denotes the number of points in the
formula, xi are the grid points in the formula and wi are the weights.

2.2. Multi-dimensional grids on [0, 1]d

Numerical integration in many dimensions is intrinsically more difficult than one-dimensional
integration. The error and computational complexity for integrating an r-times differentiable
d-dimensional function is

ε ∼ n−r/d C(ε) ∼ ε−d/r . (5)

The complexity of numerical integration grows exponentially with increasing dimension; this
is often referred to as the ‘curse of dimension’.

It is possible to break the curse of dimension when the function is more than ‘just’
differentiable. For example, suppose the integrand has mixed derivatives of order r,∣∣∣∣∂n1∂n2 · · · ∂nd f (x1, x2, . . . , xd)

∂x
n1
1 ∂x

n2
2 · · · ∂x

nd

d

∣∣∣∣ < ∞, n1, n2, . . . , nd � r. (6)

This function is more than ‘just r-times differentiable’ because certain special higher order
derivatives exist, so long as none of the variables is differentiated with respect to more than
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r times. The integration error and computational complexity for functions with bounded
mixed derivatives of order r no longer depends on the dimension. In fact, the computational
complexity is now the same as one-dimensional Gaussian quadrature,

CMixed(ε) ∼ ε−1/r . (7)

This optimal computational complexity is achieved by Gaussian cubature formulae.
Unfortunately, Gaussian cubature formulae are very difficult to construct. Indeed, one

has replaced a very difficult problem (integration in higher dimensions) with another one
(determining optimal integration formulae) [24]. Instead, one usually constructs higher
dimensional formulae as the tensor product of the one-dimensional Gaussian quadrature
formulae,

Q
(d)
l1l2···ld [f ] = Ql1 ⊗ Ql2 ⊗ · · · ⊗ Qld [f ]

=
ml1∑
i1=1

ml2∑
i2=1

· · ·
mld∑
id=1

wi1wi2 · · · wid f
(
xi1 , xi2 , . . . , xid

)
. (8)

The very commonly used simple-product cubature formula, Q
(L,d)
SP [f ] = Q

(d)
l1=l2=···=ld=L[f ],

occurs when one integrates in each dimension using the same one-dimensional formula. The
complexity of the simple-product formula is

CSP(ε) ∼ ε−d/r . (9)

The simple-product rule is optimal for functions that are merely differentiable, but is
exponentially suboptimal for functions with bounded mixed derivatives.

One can do much better than the simple-product rule by considering a linear combination
of simple-product formulae with different orders. In this paper we will focus on the Smolyak
rule [17]:

Q
(L,d)
Sm [f ] =

∑
L−d+1�|l|1�L

(−1)L−|l|1
(

d − 1
q − |l|1

)
Q

(d)
l1l2···ld [f ]

(10)
|l|1 = l1 + l2 + · · · + ld .

The Smolyak rule is within a logarithmic factor of the optimal computational complexity
for both differentiable functions (equation (5)) and for mixed-differentiable functions
(equation (7)) [25, 26]. The Smolyak rule is not optimal, but more efficient formulae are
significantly more difficult to understand and implement [27, 28]. There has been some formal
mathematical work [29–31] and proof-of-principle applications of the Smolyak method to the
quantum theory of electronic structure [32–34]. Additional details can be found in the review
article by Bungartz and Griebel [35].

Most of the previous work on the Smolyak rule has focused on integration over hypercubes,∫ 1

0
· · ·

∫ 1

0

∫ 1

0
f (x1, x2, . . . , xd) dx1 dx2 · · · dxd ≈ Q

(L,d)
Sm [f ] =

ML∑
i=1

wif (xi ). (11)

The Smolyak rule for hypercubes can be constructed from any one-dimensional quadrature
formula on [0, 1]. Our work was guided by that of Novak and Ritter, who have implemented
and tested the Smolyak rule built from the one-dimensional Clenshaw–Curtis formula [36]
and the one-dimensional rectangle rule [37]. Figure 1 shows the distribution of points in the
two-dimensional Smolyak-rectangle rule (figure 1(a)) and the Smolyak–Clenshaw–Curtis rule
(figure 1(b)). Note that the Smolyak grids are just simple-product grids in which most of the
points have been pruned away, with the points that remain reweighted accordingly. This can
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Figure 1. The location of the points in the 11th-order two-dimensional Smolyak grids for (a) the
rectangle rule and (b) the Clenshaw–Curtis rule.

be done because for functions with bounded mixed derivatives, knowing the detailed behavior
of the function in certain regions (e.g., along the central lines in the grid) is sufficient to
determine the behavior nearby.

Table 1 lists the number of grid points in the Smolyak-rectangle rule and the Smolyak–
Clenshaw–Curtis rule for different dimensions. The number of grid points in the simple-
product rectangle rule is listed for comparison. Even though the Smolyak cubatures have
many fewer points than the simple-product cubatures, the approaches have the same order of
accuracy. Smolyak cubatures are far superior to simple-product grids for molecular problems
[34].
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Table 1. The number of points, ML, in the Smolyak integration grid of order L built from the
one-dimensional rectangle rule (RR) and the Clenshaw–Curtis rule (CC). For comparison, the
number of points in a simple-product grid (SP) based on the rectangle rule is also included. Points
on the boundary of the hypercube are not counted in this tabulation because they are mapped to
infinity by the conditional distribution transformation, equation (13).

One dimension Two dimensions Three dimensions Six dimensions

L RR CC RR CC SP RR CC SP RR CC SP

1 1 1 1 1 1 1 1 1 1 1 1
2 3 1 5 1 9 7 1 27 13 1 729
3 7 3 17 5 49 31 7 343 97 13 117 649
4 15 7 49 13 225 111 19 3375 545 37 1.1 × 107

5 31 15 129 33 961 351 55 29 791 2561 145 8.9 × 108

6 63 31 321 81 3969 1023 151 2.5 × 105 10 625 481 6.3 × 1010

7 127 63 769 193 16 129 2815 399 2.0 × 106 40 193 1553 4.2 × 1012

8 255 127 1793 449 65 025 7423 1023 1.7 × 107 1.4 × 105 4817 2.7 × 1014

9 511 255 4097 1025 2.6 × 105 18 943 2559 1.3 × 108 4.7 × 105 14 465 1.8 × 1016

10 1023 511 9217 2305 1.0 × 106 47 103 6271 1.1 × 109 1.5 × 106 42 241 1.1 × 1018

2.3. The conditional distribution transformation to (−∞,∞)d

The Smolyak rule provides an accurate integration grid for the cube, [0, 1]d. However, we
are primarily interested in weighted integrals over all space, equation (1). We will use the
conditional distribution method [38–41] to define an appropriate transformation of coordinates.
Specifically, we define a coordinate transformation

x ∈ [0, 1]d ↔ R ∈ (−∞,∞)d (12)

with

x1(R1) =
∫ R1

−∞
∫ ∞
−∞ · · · ∫ ∞

−∞ P(r1, r2, . . . , rd) drd · · · dr2 dr1∫ ∞
−∞

∫ ∞
−∞ · · · ∫ ∞

−∞ P(r1, r2, . . . , rd) drd · · · dr2 dr1
,

x2(R1, R2) =
∫ R2

−∞
∫ ∞
−∞ · · · ∫ ∞

−∞ P(R1, r2, r3, . . . , rd) drd · · · dr3 dr2∫ ∞
−∞

∫ ∞
−∞ · · · ∫ ∞

−∞ P(R1, r2, r3, . . . , rd) drd · · · dr3 dr2
,

...

xd(R1, R2, . . . , Rd) =
∫ Rd

−∞ P(R1, R2, . . . , Rd−1, rd) drd∫ ∞
−∞ P(R1, R2, . . . , Rd−1, rd) drd

.

(13)

The transformation is one-to-one as long as P(R) is positive, and the transformation exists as
long as all of the integrals in equation (13) exist. (For practical purposes, it is helpful if the
integrals have simple and explicit analytical expressions.)

The Jacobian determinant for this transformation is

|J| = P(R)∫ ∞
−∞

∫ ∞
−∞ · · · ∫ ∞

−∞ P(r) dr
(14)

and so the cubature rule on the unit cube, equation (11), can be rewritten as a rule for weighted
integrals in real space

6
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−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(R)P (R) dr

≈
(

ML∑
i=1

wig(R(xi ))

)
×

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
P(R) dR. (15)

The points in the real-space grid, R(xi ), are determined using the inverse of the coordinate
transformation in equation (13).

Note that this transformation can be used for any integration grid on [0, 1]d. In this paper,
we will use the transformation for the Smolyak rule, but if better choices were available, one
could use those grids. For example, Gaussian cubature formulae for the three-dimensional
cube are known when the number of points is small, and would be a good choice when a small
number of grid points will suffice [14–16]. Perez-Jorda previously applied the conditional-
distribution transformation to the simple-product grid, Q

(d)
SP [42].

A few of the noteworthy features of this transformation follow.

(1) The transformed grid points are concentrated in regions where P(R) is large and depleted
in regions where P(R) is small. In fact, for uniformly distributed points, the probability
of observing a point at R is precisely P(R). This property is exploited in some other
applications, where the conditional-distribution transformation is used for random-number
generation with respect to the distribution P(R) [38].

(2) Points on the boundaries of the cube are transformed to ±∞. For this reason, it is important
to ensure that the integrand in equation (15) decays faster than P(R) asymptotically (i.e.,
g(R) needs to decay to zero asymptotically). This is inconvenient because it requires
careful selection of the weight function, but it is advantageous because neglecting the
boundary points reduces the number of grid points. Both the rectangle rule and the
Clenshaw–Curtis rule have points on the boundary of the interval. Those points are not
counted in the tabulation of points in table 1.

(3) The transformation of coordinates can be performed rapidly if the partial indefinite
integrals of P(R) in equation (13) can be performed analytically. In our work, we
use fits of P(R) to Gaussian-type functions,

P(R) =
∑

α

∑
i

cαi e−aαi |R−Rα |2 . (16)

This choice is motivated by the prevalence of Gaussian-type functions in computational
models of molecular electronic structure [43–45].

(4) If the grid points in the hypercube are invariant with respect to 180◦ rotation about the
axis xi = 1

2 and P(R) is invariant with respect to 180◦ rotation about Ri = 0, then the
transformed grid points will also be invariant with respect to 180◦ rotation about Ri = 0.
90◦ rotations about the Cartesian axes are similarly preserved, but other symmetries
in P(R) (rotations about the non-Cartesian axes, 120◦ rotations, etc) are not generally
maintained because those symmetries are absent from the underlying hypercube.

(5) Integration formulae for irregular integration regions can be obtained by choosing
P(R) = 0 outside the region of interest. The transformation is no longer one-to-one and
so the integration formulae may not be unique (though they will usually be). However, if
P(R) is continuous, then all of the integration formulae are equivalent.

The selection of an appropriate P(R) will differ from application to application. We
are primarily interested in applications to molecular electronic structure; in this field, the
integrands tend to be the largest in regions where the probability of observing an electron
is the greatest (because these regions contribute the largest amount to molecular properties).

7
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This suggests that it will often be fruitful to choose P(R) to be the electron density of the
molecule of interest. In general, the electron density is not known until after the calculation
is complete, however, so one needs to approximate it. For this purpose we will choose the
promolecular density [46]: the sum of the densities of the atoms the molecule comprises,
centered at the positions of the associated atomic nucleus,

P(R) = ρpro(R) =
Natoms∑
α=1

ρα(R − Rα)

≈ ρ(R). (17)

Note that the promolecular electron density will take the convenient form in equation (16) if
each atomic density is expressed as a sum of Gaussian-type functions. Constans and Carbó
have fit the atomic densities from accurate Hartree–Fock calculations to Gaussians; we will
use their fits in this paper [45].

For the purpose of illustration, consider the two-dimensional H4 molecule, with four

pseudo-hydrogen atoms with densities ρH(x1, x2) = 2
π

e−2
√

x2
1 +x2

2 centered at (±1, ±1, 0).
(Distances are measured in atomic units.) The points in the transformed Smolyak grids
corresponding to this ‘molecule’ are shown in figures 2(a) (rectangle rule) and (b) (Clenshaw–
Curtis rule). Note that the points are concentrated in the regions where the atomic density is
the largest (near the atoms) and depleted in regions where the electron density is small.

When the integrand does not resemble P(R), this provides a stringent test for the quality
of the grids. Figure 3 shows the results obtained by using the pseudo-H4 grid to integrate a
simple Gaussian function,

π =
∫ ∞

−∞

∫ ∞

−∞
e−x2

1 −x2
2 dx1 dx2. (18)

As the number of points in the Smolyak grids increases, the results of the integration rapidly
converge to the correct value.

3. Results

3.1. Gaussian function

To provide a more realistic test of the convergence of the Smolyak formulae, figure 4 presents
the results for the convergence for an integrand that is a Gaussian,

f (x1, x2, . . . , xd) =
d∏

i=1

exp
(−(d − i + 1)x2

i

)
= exp

(−x2
d − 2x2

d−1 − 3x2
d−2 − · · · ), (19)

with respect to a weight that is also a Gaussian,

P(x1, x2, . . . , xd) =
d∏

i=1

exp
(− 1

2x2
i

)
. (20)

Note that the Gaussian weight decays significantly more slowly than the integrand; this is
required because we are ignoring boundary points.

Referring to figure 4, the rectangle rule seems to be much better than the Clenshaw–
Curtis rule. This may be explained by the tendency for the Clenshaw–Curtis rule to ‘bunch up
points’ near the edges of the integration interval (see figure 1(b)). This is advantageous when
the function does not behave well near the boundary of the interval, but the function we are

8
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(a)

(b)

Figure 2. The location of the points in the transformed 11th-order Smolyak grid for the
two-dimensional ‘pseudo-H4’ molecule with atoms located at (±1, ±1). (a) The transformed
Smolyak-rectangle rule from figure 1(a). (b) The transformed Smolyak–Clenshaw–Curtis rule from
figure 1(b).

integrating here decays exponentially quickly asymptotically. The rectangle rule, which has a
higher concentration of points in the center of the interval, performs much better for this sort
of integral. We also observed that the rectangle rule formulae seem less prone to round-off
error than the Clenshaw–Curtis formulae.

3.2. The Gordon–Kim model

Heartened by the results obtained from this simple test, we decided to explore the efficiency
of the transformed Smolyak integration grids for the types of integrals that appear in density-
functional theory. Our first test uses the simple density-functional theory model of molecular
interactions proposed by Gordon and Kim [47]. In this model, the interaction potential between

9
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Figure 3. The convergence of the Smolyak formulae for the integral of a two-dimensional
Gaussian, equation (18), using the pseudo-H4 grid shown in figure 2. The log10(relative error)
rapidly decreases as log10(number of grid points) increases. Results for the rectangle rule are
reported using closed symbols (—�—) and results for the Clenshaw–Curtis rule are reported using
open symbols (—
—).
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Figure 4. The convergence of the Smolyak formulae for integrating the Gaussian in equation
(19) using the weight function given in equation (20). The plot shows log10(relative error) versus
log10(number of grid points). The rectangle rule results are denoted by: one dimension (—•—);
two dimensions (—�—); three dimensions (— —); six dimensions (—�—). The results for the
Clenshaw–Curtis rule are denoted with the analogous open symbols.

two atoms, one of which (denoted α) is centered at the origin and the other (denoted β) is
centered R atomic units away, is approximated as

Vαβ(R) = ZαZβ

R
+

∫ ∫
ρα(r)ρβ(r′)

|r − r′| dr dr′ −
∫

Zαρα(r)
r

dr −
∫

Zβρβ(r)
|r − [0, 0, R]| dr

+ T (non-add)
s [ρα, ρβ ] + E(non-add)

x [ρα, ρβ ] + E(non−add)
c [ρα, ρβ ]. (21)

10
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In this equation, the electron density for atom α, ρα(r), is centered on the origin; the electron
density for atom β is centered on the z-axis, R units away. The first four terms in equation (21)
are just the electrostatic interactions between the nuclei, between the electron densities of the
isolated atoms and between the electron densities of each atom with the other nucleus. These
terms capture the electrostatic contribution to binding in the ‘frozen density approximation’.
The frozen density approximation is accurate when the atoms are so far apart that their electron
densities are not significantly polarized.

The last three terms in equation (21) are the non-additive contributions to the kinetic
energy, exchange energy and correlation energy, respectively; these are defined by subtracting
the value of the function for the molecule from the value of the functional for the atoms,

Q(non-add)[ρα, ρβ ] ≡ Q[ρα + ρβ] − Q[ρα] − Q[ρβ]. (22)

The non-additive contributions are usually evaluated using explicit Thomas–Fermi-like
functionals. Here we have elected to use the Thomas–Fermi kinetic energy functional [48, 49]

T TF
s [ρ] = 3(3π2)2/3

10

∫
ρ5/3(r) dr, (23)

the McWeeny reparameterization [50] of the Wigner correlation functional [51]

EMW
c [ρ] = −

∫
ρ4/3(r)

2.946 + 9.652ρ1/3(r)
dr, (24)

and the Dirac exchange functional [52–54] with the Rae [55, 56] self-interaction correction
[57] factor,

ERD
x [ρ] = −κ(N)

(
3

4

(
3

π

)1/3
) ∫

ρ4/3(r) dr. (25)

Here, N denotes the number of electrons. Rae’s correction factor is obtained by solving the
equation [55, 56]

1 = Nδ3(δ3 − 4.5δ + 4) (26)

and then computing

κ(N) = 1 − 8
3δ + 2δ2 − 1

3δ3. (27)

To evaluate the Gordon–Kim expression for the interaction energy, we need an accurate
expression for the ground-state electron densities of the isolated atoms. We have again used
the Gaussian atomic density fits of Constans and Carbó [45],

ρα(r) =
∑

i

cαi e−aαi r
2
. (28)

One advantage of this form is that the electrostatic contributions to the energy can be evaluated
analytically, so only the non-additive terms in equation (21) require numerical integration.
While the Constans–Carbó fits are not accurate enough for truly quantitative results, they are
certainly sufficient for testing our integration techniques.

The last three terms in equation (21) need to be evaluated numerically. To do this, we
construct the promolecular density (cf equation (17)) from the Constans–Carbó densities and,
as described in section 2.3, use this as the weight function for the conditional distribution
transformation. Since the promolecular density depends on the position of the atoms, the
transformed-Smolyak grids adapt to changes in the internuclear distance by placing more
points in regions where the density is the highest (near the atomic nuclei) and fewer points far
from the atomic nuclei.
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Figure 5. Smolyak formulae of various orders, L, are used to construct the potential energy of
interaction for the H2 molecule from applying the Thomas–Fermi–Dirac–McWeeny Gordon–Kim
model to the Constans–Carbó atomic density fits. (a) Rectangle rule. (b) Clenshaw–Curtis rule.
The reference data were obtained using third-party software (Mathcad).

In figure 5 we compare our results for the H2 molecule to the values we obtained using
third-party software (Mathcad, with integration tolerance TOL = 10−8 and the default Romberg
integration algorithm). As the order of integration increases, our integration method converges
rapidly. It should be noted that the Gordon–Kim model fails to describe the substantial electron-
density rearrangement that accompanies chemical binding in H2, and so this interaction energy
curve is not qualitatively correct. Our interest in this model is based primarily on its relevance
for developing next-generation molecular mechanics force fields, where models similar to
Gordon–Kim can be used to model the ‘repulsive wall’ on the potential energy curve that
prevents atoms from coming too close together [58–61].

To evaluate the convergence of our methods in more detail, we engaged in a detailed study
of the interaction energy expression for the Neon dimer, Ne2. Some of the results from that
study are shown in figure 6, where the convergence of the total interaction energy and each
of its non-additive components are plotted. In figure 6, we plot the approximate ‘number of
digits of accuracy’ in the formula, which we define through

digits = − log10

(
QL − Q∞

Q∞

)
. (29)
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Figure 6. The number of digits of accuracy when Smolyak grids of various orders are used to
evaluate the Thomas–Fermi–Dirac–McWeeny Gordon–Kim model of the Ne2 interaction potential
using the Constans–Carbó atomic density fits. The number of digits of accuracy (see equation (29)
and the surrounding discussion) is plotted versus log10(number of grid points). Results for both
the rectangle rule (closed symbols) and the Clenshaw–Curtis formula (open symbols) are reported.
(a) Results for the total interaction potential (—•—) and the non-additive kinetic energy (—�—).
(b) Results for the non-additive exchange energy (— —) and the non-additive correlation energy
(—�—).

Here, QL denotes the result from the integration formulae of order L and Q∞ denotes
the infinite-order limit. Since Q∞ cannot be computed explicitly, we replaced this value
with the result from the highest-order calculation we performed, QLmax . Especially at low
orders, the resulting plots provide a faithful representation of the rate of convergence with
increasing number of points in the integration grid. Examining figure 6 in more detail,
one observes that the rectangle rule typically performs better than the Clenshaw–Curtis rule,
although the difference in performance is usually not as dramatic as it was for the simple
Gaussian test function. The rectangle rule converges more rapidly for the exchange energy than
it does for the kinetic energy, which is not surprising since ρ4/3(r) resembles the promolecular
density used to construct the grid more closely than ρ5/3(r). The correlation energy component
converges most slowly, which indicates that its relatively complicated functional form does not
mimic the promolecular density very strongly. All of these results reinforce the expectation

13
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that our integration technique will be most accurate when the weight function, P(R), used to
transform the grid strongly resembles the integrand of interest.

The largest component of the total interaction energy expression is the kinetic energy
component. Thus, it is unsurprising that the error in the total interaction energy is dominated
by the error in the non-additive kinetic energy. Iyengar et al also noted that very large
integration grids are needed to accurately integrate kinetic energy functionals [62].

Note that the convergence in figure 6 is sometimes not monotone: smaller grids
sometimes giving higher accuracy than larger grids. (There is a particular large oscillation
in the convergence of the non-additive exchange energy using the Clenshaw–Curtis grid (cf
figure 6(b)). Similar, but smaller, oscillations can be seen in figures 3 and 4.) These oscillations
occur because the convergence of this sequence of numerical cubatures is not monotone. As
the numerical integration result changes from greater than the true answer to less than the true
answer, sometimes one is fortunate enough to find a relatively small integration grid that gives
exceptionally high accuracy.

It should be stressed that the Gordon–Kim model represents a very strenuous test of our
grids. For example, the non-additive kinetic energy is 400 times smaller than the kinetic
energy of the promolecule, so obtaining four digits of accuracy in the non-additive kinetic
energy requires seven digits of accuracy in the kinetic energy of the promolecule and the
kinetic energy of the atoms.

3.3. The Gaussian model for the exchange energy

The favorable results for molecular interaction energies suggest that transformed Smolyak
grids are more generally applicable, particularly in the context of density-functional theory.
Here we will consider an application to a six-dimensional ‘kernel-type’ approximation to the
exchange energy density functional.

Kernel-type density functionals allow us to write the exchange-correlation energy in terms
of the exchange-correlation hole, and thus facilitate the direct probabilistic interpretation of
exchange and correlation effects. Such functionals have a long and distinguished history,
dating back to the weighted density approximation [63–69]. Progress has been impeded by
the computational cost of performing six-dimensional integrals but, despite the cost, there
has been a recent resurgence of interest in kernel-type functionals. Part of that interest is
based on the explicit nonlocality of kernel-type functionals, which make it possible to model
systems where the exchange-correlation hole is spatially delocalized [70, 71]. This seems to be
particularly important for describing dispersion forces [72–76]. There is also interest stemming
from the closely related pair-density functional theory, in which the exchange-correlation hole
and the electron density are the fundamental variational parameters [77–82].

It is difficult to test whether the transformed Smolyak grids can be applied to this
problem because of the absence of accurate numerical data to compare to. However, the
six-dimensional Gaussian-kernel model of Lee and Parr is equivalent to a three-dimensional
model [83]. Therefore, we can ascertain the accuracy of our numerical integration procedure
by comparing the results we obtain from

ELP
x [ρ] = −1

2

∫ ∫
ρ2

(
r + r′

2

)
exp

(
− π |r − r′|2

22/3ρ2/3
( r+r′

2

)
)

× 1

|r − r′| dr dr′ (30)

with the results of the Dirac-type exchange energy functional

ELP
x [ρ, 0] = −2−1/3

∫
ρ4/3(r) dr. (31)
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Equation (31) is obtained from equation (30) by integrating over the interelectronic coordinate,
r − r′.

The values of the three-dimensional integral (31) may be inferred from the results obtained
from the Gordon–Kim model. (Compare equations (25) and (31).) To evaluate the six-
dimensional integral (30), we choose the weight to be the product of the promolecular densities,
P(r, r′) = ρpro(r)ρpro(r′). A disadvantage of this symmetric form is that points where r = r′

occur in our integration grid; this causes problems because the integrand in equation (30)
is singular at these points. This can be circumvented by decomposing the functional into
short-range and long-range pieces,

ELP
x [ρ] = ELP−SR

x [ρ] + ELP−LR
x [ρ]. (32)

The short-range and long-range pieces are defined using the complimentary error function and
the error function, respectively:

ELP−SR
x [ρ,µ] = −1

2

∫ ∫
ρ2

(
r + r′

2

)
exp

(
− π |r − r′|2

22/3ρ−2/3
( r+r′

2

)
)

× erfc(µ|r − r′|)
|r − r′| dr dr′,

(33)

ELP−LR
x [ρ,µ] = −1

2

∫ ∫
ρ2

(
r + r′

2

)
exp

(
− π |r − r′|2

22/3ρ−2/3
( r+r′

2

)
)

× erf(µ|r − r′|)
|r − r ′| dr dr′.

(34)

A three-dimensional density-functional model is achieved for the singular ‘short-range’
functional using the time-honored, but tedious and difficult, approach [84–86]. The integrand
of the ‘long-range’ functional is not singular and can be evaluated numerically. Figure 7 shows
results for the Neon dimer obtained using the Smolyak-rectangle rule of various orders, L.
Note that as µ increases, the value of the integrand approaches the accurate value computed
from equation (31). For the higher values of µ considered here, the integrand is very strongly
peaked where r ≈ r′; this is why the order of integration needed to obtain converged results
increases rapidly as µ increases. Fortunately, it is possible to develop very good short-range
functionals, so the value of µ can remain quite small.

4. Summary

We have developed an efficient method for general multi-dimensional integrals with respect
to arbitrary weight functions (i.e., integrals with the form of equation (1)). Our approach uses
the Smolyak method to first construct cubature grids on the cube, [0, 1]d (cf equation (10)) and
then uses the conditional distribution transformation to generate integration grids in real space
with respect to any given weight function (cf equation (13)). Our numerical results converge
rapidly to the correct answer as the order of integration grids increases. We applied the grids
to the Gordon–Kim model for atomic interactions [47] and the Lee–Parr Gaussian model for
the exchange energy [83].

These calculations can be seen as ‘proof of principle’ studies for two areas where we see
this method having broad applicability. The Gordon–Kim calculations are directly relevant
to the field of frozen-density embedding, where ‘improved’ Gordon–Kim models are used
to model non-covalent interactions between solutes and solvents, metals and ligands, etc
[87–91]. More generally, the quality of our results for the Gordon–Kim model indicates that
this method will be generally useful for the evaluation of density functionals. It would certainly
be interesting, for example, to study more sophisticated kinetic energy functionals. It is of
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Figure 7. The long-range contribution to the exchange energy, equation (34), for the Neon dimer
with internuclear separation 2.5 au. is computed using the Smolyak-rectangle rule integration of
various orders, L, for different values of the range separation parameter, µ. Atomic units are used.

greater direct interest, however, to consider using the transformed Smolyak grids as the default
integration method for evaluating the exchange-correlation energies and exchange-correlation
potentials in Kohn–Sham density-functional theory. We performed such studies and obtained
excellent results [34].

The application to nonlocal, kernel-type, exchange-correlation functionals shows that this
integration method may be profitably used for six-dimensional integrals. While nonlocal
exchange-correlation functionals are indubitably of great current interest [63–69], the same
methods are relevant to ‘generalized’ density-functional theories [92, 93], most notably the
pair-density functional theory [77–82] and the first-order density matrix functional theory
[94–96]. We are currently working on applications in both nonlocal exchange-correlation
density functionals and pair-density functional theory.

At the mathematical level, we are examining methods for improving the efficiency of
our numerical integration grids. For example, would it be helpful to use the ‘promolecular’
exchange-correlation energy density (instead of the promolecular electron density) as the
weight function for the transformation? How well do other sparse-grid methods work?
Are there better one-dimensional formulae than the Clenshaw–Curtis and the rectangle rule?
Answering these questions will help us develop improved numerical integration grids. Such
grids (a) have few points, (b) can be rapidly constructed and (c) give very accurate results for
the integrals that arise in electronic structure modeling.

We also intend to extend this approach to other problems in molecular electronic structure
theory. We have already shown that the transformed Smolyak grids can be used to evaluate
the exchange-correlation matrix elements that arise in Kohn–Sham DFT calculations [34].
One can also imagine using the transformed Smolyak grids as the basis for a truly basis-set-free
approach to molecular electronic structure. Such a method requires combining the integration
methods explored in this paper with differentiation techniques for the transformed Smolyak
grids [40, 41] and grid-based solvers for second-order differential equations [27, 32, 33,
97, 98] or grid-based techniques for variational minimization of the energy.
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